AATF Genome: Evolution of Allorecognition

Human AATF genome holds AATF gene and its encoded miR-2909 in its fold, to exhibit “Hysteresis phenomenon” arising out of bi-stable cooperative-activity of these AATF gene-products. This “Hysteresis Mechanism” enables cells, within human tissues, to decouple/couple the glycolysis from/with the aerobic respiration in a fashion that equips them with flexible dynamic programming to read the incoming signals as “Friend” or “Foe” and accordingly write the script for calibrated-response directed specifically/selectively to erase the signals perceived by these cells to be “Foe”. This novel model not only has the ability to explain the existing anomalies in “Allorecognition phenomenon” but may be even more useful for adding a new paradigm for futuristic studies directed to design preventive/ curative immunological-strategies against human diseases.

Human AATF genome

Cell Cycle regulators, having ability to influence both cell division and cell death, are involved in many physiological processes including tissue homeostasis, embryonic development and immune response. AATF was discovered initially as an interacting molecular partner of subunit-11 of RNA polymerase-II as well as the retinoblastoma protein (Rb) which is the translational product of a first tumor suppressor gene cloned and identified from retinoblastoma tumors. A major cellular target of Rb is the E2F family of transcription factors which regulate the genes involved in the cell-cycle progression for G1 to S-phase of the cellcycle.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s